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Using covariant Lyapunov vectors to quantify high-dimensional chaos with a conservation law
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We explore the high-dimensional chaos of a one-dimensional lattice of diffusively coupled tent maps using
the covariant Lyapunov vectors (CLVs). We investigate the connection between the dynamics of the maps in
the physical space and the dynamics of the covariant Lyapunov vectors and covariant Lyapunov exponents that
describe the direction and growth (or decay) of small perturbations in the tangent space. We explore the tangent
space splitting into physical and transient modes and find that the splitting persists for all of the conditions we
explore. In general, the leading CLVs are highly localized in space and the CLVs become less localized with
increasing Lyapunov index. We consider the dynamics with a conservation law whose strength is controlled by
a parameter that can be continuously varied. Our results indicate that a conservation law delocalizes the spatial
variation of the CLVs. We find that when a conservation law is present, the leading CLVs are entangled with
fewer of their neighboring CLVs than in the absence of a conservation law.
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I. INTRODUCTION

The complex dynamics of high-dimensional systems are at
the center of many important problems [1]. Examples include
weather prediction and the complex dynamics of fluid turbu-
lence. The dimension of these systems is large, in part, due
to the large number of degrees of freedom that contribute to
the dynamics. Many powerful approaches are available when
the dimension of the dynamics is small [2,3]; however, few of
these generalize in a straightforward way to very large systems
which are of intense current interest [4].

Although powerful new approaches have emerged with ex-
citing potential to describe high-dimensional dynamics, such
as Koopman mode decomposition [5,6], dynamic mode de-
composition [7,8], machine learning approaches [9,10], and
the use of exact coherent structures [11–13], an exact and
rigorous representation of high-dimensional chaos remains
an open challenge. The use of covariant Lyapunov vectors
(CLVs), an approach rooted in a fundamental dynamical sys-
tems description [14,15], has been shown to shed new physical
insights into high-dimensional systems which has yielded a
deeper understanding of chaotic dynamics [16–18].

We use the CLVs to probe the high-dimensional dynam-
ics of large one-dimensional coupled map lattices (CMLs)
[19–21] for a wide range of conditions. CMLs have a rich
literature providing new insights into nonlinear dynamical
systems and the chaos of spatially extended systems. For
example, CMLs have been used to study fluid convection
[22], cloud dynamics [23], and the formation of spirals in
astrophysical problems [24] as well as for pushing forward
new ideas for the control of spatiotemporal chaos [25] and
secure data encryption [26].

*Corresponding author: mrp@vt.edu

CMLs have played an important role in the use of CLVs
to explore high-dimensional chaos and many important new
physical insights have been gained. This includes the first
demonstration of the dynamic algorithm for computing CLVs
by Ginelli et al. [27], the hyperbolic splitting of the tangent
space into physical and transient modes [28], the exploration
of hydrodynamic Lyapunov modes [29,30], and the idea of
collective Lyapunov modes [31].

A significant advantage of using CMLs is the reduced
computational expense of the numerical investigation which
permits the study of fundamental questions that would be
difficult to approach otherwise. For example, investigations
into a thermodynamic description of nonequilbrium dynamics
[32–34] and the role of conservation laws on nonlinear dy-
namics [32,35–38].

Conservation laws are important for many problems of
scientific and engineering interest. The conservation of mass,
momentum, and energy lead to the governing partial dif-
ferential equations of heat transfer and fluid dynamics. For
example, the Navier-Stokes equations that describes fluid
motion or the Boussinesq equations of thermal convection.
Conservation laws also appear as constraints such as the
conserved averaged height of a fluid sloshing in a container
[39] or the conservation of charge in the electrohydrodynamic
instabilities of liquid nematic crystals [40]. In addition, an
important consideration for high-dimensional dynamical sys-
tems generated by data-driven approaches is the presence and
determination of hidden conservation laws [41].

By using CMLs we are able to numerically iterate large
lattices for very long times while computing the entire spec-
trum of CLVs. We use the spectrum of CLVs to investigate
fundamental features of the dynamics. In particular, we ex-
plore the dynamics for two different values of the control
parameter that, for an individual map, yields significantly
different chaotic dynamics. We also investigate the influence
of a conservation law on the CLVs and the dynamics.
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FIG. 1. A one-dimensional lattice of coupled maps with lattice
index i, time step n, total number of maps N , and periodic boundary
conditions. The dynamics of the lattice are given by iterating Eq. (1).

Such a broad study for large systems, over long times, re-
mains computationally prohibitive using the governing partial
differential equations of most laboratory scale systems. The
fundamental insights gained by studying CMLs are useful in
guiding the development of theoretical ideas and numerical
approaches to build our physical understanding of the high-
dimensional chaotic dynamics of large systems.

II. APPROACH

A. Diffusively coupled maps with a conservation law

We are interested in studying the dynamics of large spa-
tially extended systems where the chaos is generated locally
and the dynamics are coupled spatially. In particular, we ex-
plore the influence of nearest-neighbor diffusive coupling as
well as a global coupling due to a conservation law.

We explore the dynamics of a large one-dimensional lattice
of coupled maps for a range of conditions. A schematic of the
lattice indicating our variable conventions is shown in Fig. 1.
CMLs have been used to explore chaotic dynamics with a
wide range of spatial coupling mechanisms [19,35,42]. The
most complex situation we will explore is a lattice with dif-
fusive coupling and a conservation law [35,37,38,43] and we
will use this situation to describe the details of our approach.

The dynamics of the lattice is given by
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where u(n+1)
i is the continuous state of the map located at

site i at discrete time n + 1. The lattice has a total of N
sites and the index i specifies an individual lattice site where
i = 1, 2, . . . , N . We use periodic boundary conditions such
that u(n)

i = u(n)
i+N for all n. We are interested in the long-time

dynamics of the lattice and in a typical simulation we use
n f � 106 where n f is the total number of discrete time steps.

The function f (u) gives the state of an isolated map at the
next time step, u(n+1) = f (u(n) ). In our study, an identical tent
map is placed at every lattice site where

f (u(n) ) = 1 − a|u(n)| (2)

and a > 0 is a constant. The Lyapunov exponent λ for a single
tent-map is λ = ln a.

The second term on the right-hand side of Eq. (1) is the
nearest-neighbor diffusive coupling with a strength of ε. In
this case, ε has the physical interpretation of determining the
magnitude of a diffusion coefficient that multiplies a finite
difference operator for a second-order spatial derivative with
a step size of unity.

An additive conservation law is included with the final term
of Eq. (1) which ensures that

N∑
i=1

u(n)
i = c0 (3)

at every n, when β = 1, where c0 is a constant determined
by the initial conditions. The choice of c0 has a significant
impact on the dynamics. The conservation law is a form of
global coupling involving the states of all of the lattice sites.

The strength of the conservation law is determined by the
constant β where 0 � β � 1. The term 〈g(u(n)

1 , . . . , u(n)
N )〉 is

the mean value of the state of the maps over all of the lattice
sites at time n + 1 in the absence of the global coupling (β =
0). For the symmetric diffusive coupling that we consider,
all that remains in this term is the sum of the states of the
individual maps if evolved forward by one time step. This
yields
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The presence of the conservation law in Eq. (4) can be val-
idated by setting β = 1 and summing over all of the lattice
sites while using Eq. (3) and recognizing that the diffusive
term vanishes when periodic boundary conditions are used. In
Eq. (1) the conservation law is applied synchronously [43] as
opposed to sequentially [19].

When β = 0, the conservation law is not imposed and the
result is a lattice of diffusively coupled maps. In this case, our
formulation is similar to the approach used by Takeuchi et al.
[28]. When β = 1, the conservation law is enforced and the
sum of all of the states of the maps across the lattice remain
at the constant value c0. When 0 < β < 1, the conservation
law is partially imposed; we will refer to this as a broken
conservation law. In this light, the constant β provides a single
parameter that we can use to study the lattice dynamics as a
function of the strength of the conservation law.

B. The covariant Lyapunov vectors

We use the dynamic algorithm proposed by Ginelli et al.
[27] to compute the spectrum of CLVs. In the following, we
present only the necessary details regarding their computation
for the lattices we explore, see Refs. [16,18,44] for an in-
depth discussion of the computational aspects of determining
the CLVs.

There are essentially three steps in the calculation of the
CLVs. We begin by listing these steps and then by providing
more detail about their implementation for our calculations.
(i) A long forward-time calculation of the lattice dynamics is
conducted. (ii) The forward-time calculation is then continued
while also computing the dynamics of the perturbations which
provide a description of the tangent space. During this time,
periodic reduced QR decompositions of the perturbations are
computed and stored for use in the next step. (iii) A set of
vectors are chosen which are evolved backwards in time to
compute the combination matrix that is used to construct the
CLVs from the stored Q and R matrices.

054202-2



USING COVARIANT LYAPUNOV VECTORS TO QUANTIFY … PHYSICAL REVIEW E 108, 054202 (2023)

The implementation of this algorithm for our computations
can be described as follows. Starting from an initial condition
u(0)

i , Eq. (4) is iterated for a long time n f to ensure initial
transients have decayed. The goal is to evolve the lattice
dynamics long enough such that the nonlinear trajectory in the
N-dimensional state space is now on the attractor. In a typical
simulation we use n f � 106.

At this point, Nλ linearized equations are simultaneously
evolved with the nonlinear lattice. Nλ is the number of Lya-
punov vectors and exponents that will be calculated where
Nλ is chosen such that 1 � Nλ � N . The linearized equa-
tions quantify the growth or decay of small perturbations and
collectively they describe the tangent space. The evolution of
the kth perturbation vector δ�uk is given by

δ�u(n+1)
k = J(n)δ�u(n)

k , (5)

where k = 1, . . . , Nλ is the Lyapunov vector index and each
δ�uk has N elements. J is the N × N Jacobian matrix

J(n) =
(

∂ �f
∂ �u

)(n)

(6)

that is evaluated along the nonlinear trajectory where �f =
�f (�u(n) ). As the evolution proceeds forward in time, the per-

turbation vectors are periodically reorthonormalized using a
reduced QR decomposition where the Q and R matrices are
stored for later use in the algorithm. For the calculation of
Nλ CLVs, the columns of the N × Nλ matrix Q contain the
orthonormalized vectors �q (n)

k , where k = 1, . . . , Nλ and each
�qk has N elements. These orthonormalized vectors �qk are
often referred to as the Gram-Schmidt vectors or the backward
Lyapunov vectors. The upper triangular matrix R is a Nλ × Nλ

matrix containing the expansion and contraction factors for
the �q (n)

k . The diagonal elements of R are directly related to
the Gram-Schmidt Lyapunov exponents and the off-diagonal
elements are essential in determining the directions of
the CLVs.

Next Nλ linearly independent vectors (often, random vec-
tors are used) of length k, where k = 1, . . . , Nλ, are chosen
which are iterated backwards in time using the stored Q and
R matrices in order to compute the Nλ × Nλ upper triangular
combination matrix C. The matrix C is computed during the
backwards evolution as

C(n−1)
j,i = [

R(n)
j,i

]−1
C(n)

j,i , (7)

where R−1 is the inverse of R.
The CLVs, �v (n)

k , are then computed as the linear combi-
nation of the �q (n)

k where the coefficients used in the linear
combination are given by the columns of C. Specifically,
column k of C provides the k coefficients that are used
when forming the linear combination of the �q (n)

j where j =
1, . . . , k. This can be represented as

�v (n)
k =

k∑
j=1

C(n)
j,k �q (n)

j , (8)

where each �v (n)
k has N elements.

In our study, we have found it to be more useful to use the
backward integration process to compute the CLVs, �v (n)

k , at

(a) (b)

FIG. 2. The chaotic dynamics of a single tent-map for (a) four-
band chaos (a = 1.1, λ = 0.095) and (b) homogeneous chaos (a =
1.6, λ = 0.47) where u(0) = 0.2, nf = 104, and the last 100 values
are shown. Solid lines are included between the points as a guide.
(a) Four-band chaos, the map proceeds from one band to the next in
a sequential order as indicated by the shaded regions. The chaos is
due to the variation of the values within each band. (b) Homogeneous
chaos, the chaotic dynamics are not limited to a band structure and
the map values are more homogeneously distributed.

many different time steps rather than to integrate a particular
CLV forward or backward in time using the Jacobian. The
computed CLVs can be used to visualize their spatiotem-
poral dynamics for further analysis. The CLVs can also be
integrated forward in time using the Jacobian to provide val-
ues of the instantaneous covariant Lyapunov exponents. The
long-time average of the instantaneous covariant Lyapunov
exponents yields the spectrum of Lyapunov exponents.

III. RESULTS AND DISCUSSION

The value of the control parameter a in Eq. (2) deter-
mines the dynamics of a single tent-map. We have focused
our investigation on the two values a = 1.1 and a = 1.6. For
these two values of a, the dynamics of a single map are both
chaotic while the details of the dynamics are quite different.
We use this to explore how this is reflected in the CLVs
and in the powerful diagnostics that can be calculated using
the CLVs.

For a = 1.1, a single tent map exhibits what is called four-
band chaos with a positive Lyapunov exponent λ = 0.095.
The dynamics are illustrated in Fig. 2(a) which shows how
the tent-map proceeds through the four bands in a repeating
sequence. However, the values within each band vary to yield
the chaotic dynamics. Figure 2(a) shows the variation of u(n)

for 100 time steps after initial transients have decayed. The
lines are included as a guide and the four different bands are
indicated by the shaded regions.

Figure 2(b) shows the chaotic dynamics for a = 1.6. In
this case, λ = 0.47 which is nearly 5 times larger than the
Lyapunov exponent for the four-band chaos we explore. For
a = 1.6, the four-band structure is no longer present and the
values of the state of the map are more homogeneously dis-
tributed. We will refer to these dynamics as homogeneous
chaos.

We next discuss our investigation of one-dimensional lat-
tices of tent-maps with periodic boundary conditions for a
range of conditions. In all cases we have used diffusive cou-
pling with a strength of ε = 0.65. In addition, the initial
conditions for all simulations are random where the value of
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(a) (b)

FIG. 3. The dynamics of diffusively coupled maps in the four-
band chaos regime without a conservation law (N = 512, ε = 0.65,
β = 0, a = 1.1). (a) The entire lattice exhibits four band chaos.
The values of u(n)

i are shown for four consecutive time steps using
different colors in the order of red, green, blue, and cyan as also
indicated by the numerical labels on the right. (b) Space-time plot
showing the dynamics every 16 time steps (n = 16n∗). For these
parameters, the plotted lattice values are always in the first band. The
lattice has been iterated for over 106 time steps.

c0 in Eq. (3) has been set to c0 = 1.2. Therefore, for all of
the N = 512 lattices that we discuss, each lattice was initiated
from the identical initial condition for all of the figures shown.
When we present results for multiple initial conditions these
have also been implemented consistently when comparing
different cases for the same system size.

Unless noted otherwise, the following describes the details
of our numerical approach. Each lattice was first iterated for
times n f � 106. The lattices and the perturbation vectors were
then iterated forward in time for an additional 104 time units
where reduced QR decompositions were computed every
time step. The lattices were then iterated backward in time
for 4 × 103 time units to compute converged values of the
combination matrix. We then used the combination matrix to
compute the spectrum of CLV’s for 103 time steps which we
used in our analysis. We have verified that our results do not
change significantly using simulations with much longer time
integrations.

The organization of the remainder of the paper is as fol-
lows. We first discuss our results for a diffusively coupled
lattice without a conservation law in Sec. III A. This is fol-
lowed by Sec. III B where we include a conservation law. In
Sec. III C we explore the dynamics when the conservation
law is partially imposed. Last, we present our conclusions in
Sec. IV.

A. Chaotic dynamics without a conservation law

We first explore lattices of diffusively coupled tent-maps
in the absence of a conservation law (β = 0). The dynamics
of lattices with N = 512 diffusively coupled maps are shown
in Figs. 3 and 4. In all of our calculations we use a diffu-
sion coefficient of ε = 0.65. This allows us to connect our
findings with the study by Takeuchi et al. who explored a
smaller lattice (N = 256) without a conservation law. It would
be interesting to explore the variation of the dynamics as a
function of the diffusion coefficient but we have not explored
this further here.

The four-band chaos case, a = 1.1, is presented in Fig. 3(a)
which shows the states of lattice sites, u(n)

i for i = 1, . . . , N , at
four consecutive time steps. Each time step is illustrated using

(a) (b)

FIG. 4. The dynamics of diffusively coupled maps in the homo-
geneous chaos regime without a conservation law (N = 512, β = 0,
a = 1.6). (a) The lattice values are more homogeneously distributed
than what is shown in Fig. 3(a). The values of u(n)

i are shown at
one instant of time. The lattice was initiated from the same initial
condition used in Fig. 3 and the dynamics have been iterated for
over 106 time steps. (b) A space-time plot of the dynamics using
n = 16n∗.

a different color and the sequential order is indicated by the
numerical labels on the right. The entire lattice executes four-
band chaos in lock-step. However, the values of the lattice
sites vary within each band resulting in the chaotic dynamics.
The lattice continues this four-band sequence for the duration
of the simulation.

A space-time plot of the lattice dynamics is shown in
Fig. 3(b). The dynamics are plotted using n∗ where n = 16n∗
to more clearly show the variation in the dynamics. For the
case shown, this results in the space-time plot illustrating the
dynamics in the first band from Fig. 3(a). Plots illustrating the
dynamics by strobing the results to visualize the lattice values
in the different bands would yield similar results and are not
shown.

Figure 4 illustrates the dynamics of the lattice for the
homogeneous chaos case where a = 1.6. The band structure
is no longer present and only a single instant of time is
shown in Fig. 4(a). There is a spatially varying structure
to the lattice values with a wavelength of approximately 10
lattice sites. However, the spatial variation is quite compli-
cated with defect type structures that vary significantly with
time which is evident in the space-time plot as indicated by
Fig. 4(b).

The spectra of the Lyapunov exponents are shown in
Figs. 5(a)–5(b) for lattices of different sizes N . The spectra
are plotted using the scaled index k/N which collapse to a
single curve when the chaotic dynamics are in the extensive
regime.

Figure 5(a) shows the Lyapunov exponent spectra for the
case of four-band chaos, a = 1.1. The leading Lyapunov ex-
ponent, λ1 = 0.052, is greater than zero indicating chaos. The
leading Lyapunov exponent λ1 is less than the value of a single
map where λ = 0.095. This reduction in λ1, when compared
with the Lyapunov exponent for a single map, is a result of the
diffusive coupling. For lattices where N � 32 the Lyapunov
spectra collapse to a single curve and the chaotic dynamics
are extensive.

Figure 5(b) shows the Lyapunov spectra for homogeneous
chaos (a = 1.6) where similar trends are found. In this case,
λ1 = 0.28, whereas for a single map λ = 0.47. The chaotic
dynamics become extensive for N � 64. In our study we will
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(a) (b)

FIG. 5. The Lyapunov exponent spectra for diffusively coupled
maps without a conservation law (β = 0). The Lyapunov exponents
λ(k/N ) plotted with the normalized index k/N . For increasing N ,
the results collapse to a single curve indicating extensive chaos.
(a) a = 1.1, the dynamics are extensive for N � 32. (b) a = 1.6, the
dynamics are extensive for N � 64.

focus on lattices with N = 512 sites which is in the exten-
sively chaotic regime.

Figure 6 shows the variation of the fractal dimension
Dλ (circles) with system size N . Dλ is computed using the
Kaplan-Yorke formula [45] which only requires knowledge
of the spectrum of Lyapunov exponents. Roughly speaking,
the fractal dimension is the number of Lyapunov exponents
which must be added together to yield a value of zero. This
provides an estimate of the number of degrees of freedom
required to describe the chaotic dynamics, on average. This
can be expressed as

Dλ = K + SK

|λK+1| , (9)

FIG. 6. The variation of the dimension of the dynamics with
system size N for diffusively coupled maps without a conservation
law (β = 0). Fractal dimension Dλ (circles), a = 1.1 (red, lower)
and a = 1.6 (blue, upper). Physical dimension Dph (squares), a = 1.1
(red, lower) and a = 1.6 (blue, upper). Lines show D ∝ N indicating
extensive chaos. The dimension cannot be in the gray region. For
each N , results using at least three different initial conditions are
shown. For N � 18 the type of dynamics depends on the initial
conditions.

(a) (b)

(d)(c)

FIG. 7. Space-time plots of the CLVs of four-band chaos without
a conservation law (N = 512, β = 0, a = 1.1). The magnitude of
|�v (n)

k | is shown where k is the Lyapunov index and i is the index over
the components of the CLV. (a) k = 1, (b) k = 10, (c) k = 100, and
(d) k = 500. For (d) the color scale range has been reduced to ac-
count for the strongly delocalized nature of the Lyapunov vector. The
corresponding Lyapunov exponents are λ1 = 0.0616, λ10 = 0.0526,
λ100 = −0.0856, and λ500 = −3.5367.

where the summation of the Lyapunov exponents Sj is
given by

S j =
j∑

k=1

λk (10)

and j = 1, . . . , Nλ [1]. The integer K is the largest index j for
S j to yield a positive value S j > 0.

In Fig. 6, the upper line through the circles (blue) is for
homogeneous chaos, a = 1.6, and the lower line through the
circles (red) is for four-band chaos, a = 1.1. For each N , and
for each a, results are shown for at least three different random
initial conditions. Dλ for the four-band chaos case exhibits
variations with the choice of initial conditions, whereas the
variation for the homogeneous chaos case is much smaller.
In addition, Dλ for homogeneous chaos is significantly larger
than that of the four-band chaos as expected because of the
larger value of the control parameter a. For the same system
size, Dλ for homogeneous chaos is approximately three times
larger than Dλ for four-band chaos over the range shown.

For extensive chaos it is expected that Dλ ∝ N . This is indi-
cated in Fig. 6 by the two solid black lines through the circles
where Dλ = 0.17N − 2.2 for a = 1.1 and Dλ = 0.49N − 1.1
for a = 1.6. The maximum possible dimension is equal to the
number of degrees of freedom, which is the number of lattice
sites, and dimension values larger than this are not accessible
which is indicated by the gray shaded region.

Figure 7 shows space-time plots of the magnitude of the
CLVs, |�v (n)

k |, for four values of k for four-band chaos without
a conservation law. The dynamics in physical space for these
results are shown in Fig. 3. The four CLVs, as indicated by
the CLV index k, are selected to indicate the variation in the
CLV dynamics over the entire range of the spectrum. In each
panel, i is the index representing the ith component of that
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individual CLV and the ordinate axis is time. Dark regions
indicate a large value and the light regions indicate a small
value which are quantitatively specified by the color bars.

The magnitude of the leading CLV, k = 1, is shown in
Fig. 7(a). The leading CLV is very localized in space. A
similar localized structure is found for the leading CLV when
using different random initial conditions where the localized
structure occurs at different locations in terms of the index
i. The width of the band of significant CLV magnitude, as
indicated by the dark region, encompasses a region of approx-
imately 10 lattice sites. This indicates that small perturbations
at these lattice sites grow much faster than elsewhere on the
lattice. Such a highly localized CLV indicates a direction in
the tangent space where perturbation growth is largest.

A close comparison of the CLV magnitude with the lattice
dynamics in physical space, as shown in Fig. 3, yields that
these lattice sites also exhibit significant variations in their
dynamics. However, this significant variation in the physical
space dynamics is not unique to this region. For example, the
dynamics of the lattice in Fig. 3 are also quite complicated in
the region 1 � i � 90, whereas the leading CLV magnitude
for these index values are very small in Fig. 7(a).

It is not clear how to identify this location where the
CLV magnitude is large and localized beforehand using only
knowledge of u(n)

i . Similar results have been obtained for
Rayleigh-Bénard convection where the leading Lyapunov
vector was compared closely with the flow field dynamics and
it was not possible to define flow field features that uniquely
locate regions of large Lyapunov vector magnitude [46–50].

Figures 7(b)–7(d) illustrates the variation of the CLV mag-
nitude with increasing values of the Lyapunov index k. For
the 10th Lyapunov vector, shown in Fig. 7(b), the CLV has
become less localized overall. For example, at any time n there
will be several bands of i where the magnitude is significant,
yet it still consists of localized structures. The localization
continues to decrease with increasing Lyapunov index k as
indicated by the 100th CLV shown in Fig. 7(c). The 500th
CLV is shown in Fig. 7(d) which is very delocalized and uses
a different color bar scale than the other panels in order to
discern the variations.

A description of the important length scales of the CLVs
is provided by the spatial power spectrum. The spatial power
spectrum is shown in Fig. 8(a) for the case of four-band chaos
where j is the CLV index and k is the integer wave number.
The color contours represent the time-averaged magnitude of
the discrete Fourier transform in space which has been plotted
on a log scale with the values indicated by the color bar.

The spatial power spectrum shown in Fig. 8(a) is similar to
what was described by Takeuchi et al. [28] where they used
a smaller lattice (N = 256) for similar conditions. For small
wave number k, which indicates large length scales, there is
significant power in the leading CLVs as indicated by the red
region in the lower left corner of Fig. 8(a). The Lyapunov ex-
ponent with the smallest positive value, within the precision of
our calculations, occurs for j = 40 where λ40 = 3.6 × 10−3.
The significant amount of power in the CLVs with small posi-
tive Lyapunov exponents has been described as hydrodynamic
Lyapunov modes [29].

The horizontal stripe region of very low magnitude in
power, indicated by the blue region, coincides with the in-

(a)

(b)

FIG. 8. The spatial power spectrum of the CLVs without a con-
servation law (β = 0) for (a) a = 1.1 and (b) a = 1.6 on a log scale
using the colors given by the colorbar. A vertical slice at j is a spatial
power spectrum of the jth CLV as a function of the spatial (integer)
wave number k where k = 1, . . . , N/2 and the magnitude is indicated
by the color contours.

dex of the eigenvalue of the diffusive coupling operator [28]
whose value is closest to zero which occurs at a value of
k = 175. The branching nature of the spatial power spectrum
and the triangular features present for large values of the CLV
index j are due to the nearly Fourier mode nature of the
transient modes [28].

In order to quantify the localization of the CLVs, we use
the inverse participation ratio Y (k)

2 [31,51] where

Y (k)
2 =

〈
N∑

j=1

∣∣v(k)
j

∣∣4

〉
t

. (11)

The kth CLV, �v(k), is a normalized vector with unit magnitude
|�v(k)|2 = 1 and the notation 〈·〉t represents a time average.
The inverse participation ratio provides insight into the lo-
calization properties of the CLVs. A large magnitude of Y (k)

2
indicates a large amount of localization.

The inverse participation ratio is shown for a wide range of
conditions in Fig. 9. The four-band chaos case without a con-
servation law is shown in Fig. 9(a) as the circles (red). There is
significant variation of the amount of localization for k � 150;
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(a)

(b)

FIG. 9. The variation of the inverse participation ratio Y (k)
2 given

by Eq. (11) with the kth CLV for different values of the strength of
the conservation law β. (a) Four band chaos a = 1.1 and (b) homo-
geneous chaos a = 1.6 where β = 0 (◦, red), β = 0.1 (�, green),
β = 0.5 (∇, blue), β = 0.9 (�, gray), and β = 1 (	, orange).

however, the overall trend is a decrease in localization with
increasing index k of the CLV.

The CLVs are not orthogonal vectors and their direction
in the tangent-space is a physically meaningful quantity. Of
immediate interest are the relative directions of the different
CLVs. If the CLVs have near tangencies, then their dynamics
are coupled with one another since small variations in one of
the CLVs can affect the other and vice versa. If the CLVs
do not have near tangencies, or more precisely if the angle
between them is bounded away from zero, then they are hyper-
bolically isolated in the tangent space and their dynamics are
not coupled with one another. These ideas have been used by
Yang et al. [52] to describe a splitting of the tangent space into
physical modes, for CLVs with near tangencies, and transient
modes, for isolated CLVs. This decomposition of the tangent
space provides important insights into the dynamics.

One way to quantify the relative directions of large num-
bers of CLVs for long times is to compute the violations of the
dominance of Oseledets splitting (DOS) [18,53]. The spec-
trum of the infinite-time Lyapunov exponents are guaranteed
to be in descending order λ1 > λ2 . . ., where we have assumed

distinct exponents for simplicity of the discussion, due to the
isolation of the subspaces described by the different expansion
rates in the tangent space [53].

However, the finite-time covariant Lyapunov exponents
(CLEs) may not follow this strict ordering for all time and
there will be periods of time where this ordering is violated.
It is important to highlight that these violations can only be
computed using the finite-time CLEs and not the finite-time
Lyapunov exponents computed using the Gram-Schmidt vec-
tors despite the fact that they converge to the same values in
the infinite-time limit. It has been shown that the presence of
violations between two finite-time CLEs indicate near tangen-
cies between the two corresponding CLVs [54,55].

Following the typical convention [28], we use λ̃τ
k (t ) to

indicate the kth finite-time CLE at time t whose value is
determined using the time interval from t to t + τ where
τ is a constant. In our calculations we have used τ = 5.
The difference between all possible pairs of λ̃τ

k (t ) can be
expressed as

�λτ
k1,k2

(t ) = λ̃τ
k1

(t ) − λ̃τ
k2

(t ), (12)

where k1 and k2 are Lyapunov vector indices with each index
ranging from 1 to Nλ. The amount of violation is then com-
puted as

ντ
k1,k2

= 〈
1 − H

[
�λτ

k1,k2
(t )

]〉
, (13)

where a unit step function is indicated by H and the angle
brackets represent a time average. Therefore, ντ

k1,k2
represents

the fraction of the time a violation occurs between the two
CLVs given by the k1 and k2 indices. The violation measure
is within the range 0 � ντ

k1,k2
� 1 where ντ

k1,k2
= 1 indicates

pure violation for all time and ντ
k1,k2

= 0 indicates the absence
of any violations.

The violations of the DOS for the lattice of diffusively
coupled tent maps in the absence of a conservation law is
shown in Fig. 10. The results are shown using a log scale
where dark regions indicate violations and light regions in-
dicate the absence of violations as indicated by the color bars.
The diagonal from the lower left to the upper right is black and
represents that each CLV, when compared with itself, yields
pure violation. The figure is symmetric about the diagonal
because ντ

k1,k2
represents the pairwise comparison between

two CLVs and is independent of the order of the indices. The
region above the diagonal is obtained by reversing the order
of indices in Eqs. (12) and (13).

The violations of the DOS for the entire lattice are shown
in Fig. 10(a). The dark regions represent significant violations
which indicate that the two CLVs being compared, given by
k1 and k2, have frequent near tangencies and can be thought
of as entangled or coupled CLVs. The large band of entan-
gled CLVs, due to their near tangencies, have been called the
physical modes [28,52].

A close-up of the violations among the final 50 CLVs is
shown in Fig. 10(b). This reveals a transition from the phys-
ical modes to isolated modes that occur in groups of 4 and
2 modes. These isolated modes are referred to as the transient
modes. In Fig. 10 there are 484 physical modes and 28 iso-
lated modes. It has been suggested [52] that the number of
physical modes yields a measure of the dimension of the
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FIG. 10. Violations of the DOS for four-band chaos without a
conservation law (N = 512, β = 0, a = 1.1) indicating 484 physical
modes (Dph = 484) and 28 transient modes. Contours of the viola-
tions ντ

k1,k2
, defined in Eq. (13), are plotted on a log scale where dark

regions represent violations and light regions represent the absence
of violations. k1 and k2 are CLV indices. (a) The entire lattice. (b) A
close-up of the violations for the last 50 CLVs.

dynamics, called the physical dimension Dph, which may pro-
vide an estimate for the dimension of the inertial manifold.

For this lattice of diffusively coupled tent maps without a
conservation law, our results indicate Dph = 484. Values of
Dph for lattices of varying size without a conservation law are
shown in Fig. 6 using the square symbols. Dph is over five
times larger than the fractal dimension, Dλ = 83.2. It is clear
that the physical dimension, for these results, is nearly equal
to the system size N which represents the maximum possible
value for the dimension of these one-dimensional lattices as
represented by the gray region in Fig. 6.

We now explore the dynamics of a lattice where each
individual map has the control parameter set to a = 1.6. In
this case, this is a lattice of diffusively coupled maps without
a conservation law where each individual map would exhibit
homogeneous chaos if isolated. The dynamics of this lattice
are shown in Fig. 4. Space-time plots of the CLVs are shown in
Fig. 11 for (a) k = 1, (b) k = 10, (c) k = 100, and (d) k = 500
using the same conventions of Fig. 7.

The spatiotemporal dynamics of the leading CLV are
shown in Fig. 11(a). The leading CLV is highly localized
yet the spatial variation is larger than what was found in
Fig. 7(a). Despite its localized nature, the leading CLV shown
in Fig. 11(a), is fractured with the presence of branching
structures. As the CLV index increases in Figs. 11(b)–11(d),

(a) (b)

(d)(c)

FIG. 11. Space-time plots of the CLVs of homogeneous chaos
without a conservation law (N = 512, β = 0, a = 1.6). |�v (n)

k | is
shown for (a) k = 1, (b) k = 10, (c) k = 100, and (d) k = 500. The
gray scale range for (d) has been reduced to visualize the delocal-
ized spatial variation. The corresponding Lyapunov exponents are
λ1 = 0.2854, λ10 = 0.2767, λ100 = 0.0966, and λ500 = −2.6240.

the CLVs again delocalize with a very homogeneous spatial
variation for the 500th CLV shown in Fig. 11(d).

The spatial power spectrum are found for the case of homo-
geneous chaos shown in Fig. 8(b). For homogeneous chaos the
features present in the spatial power spectrum are smoother
and there is more power present at small wave number for
the higher index CLV given by large j. The smallest positive
Lyapunov exponent for this case is λ145 = 1.9 × 10−3. The
localization for the homogeneous case is shown in Fig. 9(b)
where the case without a conservation law is shown by the
red circles. For homogeneous chaos, the general trend of
decreasing localization is much clearer.

The violations of the DOS for this lattice are shown in
Fig. 12. Again there is a large band of entangled physical
modes which eventually transitions to transient modes at large
values of the index. The transition between the physical and
transient modes is evident in the close-up of the violations
for the final 50 CLVs shown in Fig. 12(b). A close inspection
reveals 504 physical modes and 8 transient modes which all
occur in pairs. As expected, the increased value of the con-
trol parameter a has resulted in an increase in the number
of physical modes when compared with Fig. 10. Even for
this increased value of a with more complex dynamics, the
splitting of the tangent space into physical and transient modes
remains.

B. Chaotic dynamics with a conservation law

We now explore the dynamics of diffusively coupled maps
with a conservation law by setting β = 1 in Eq. (1). We
investigate how the conservation law affects the dynamics, the
splitting of the tangent space, and the spatiotemporal features
of the CLVs.

The synchronous conservation law reduces the number of
degrees of freedom of the system by one. As a result, the
total number of CLVs comprising the spectrum is N − 1.
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(a)

(b)

FIG. 12. Violations of the dominance of Oseledets splitting for
homogeneous chaos without a conservation law (N = 512, β = 0,
a = 1.6) indicating Dph = 504 and 8 transient modes. (a) The entire
lattice. (b) A close-up of the last 50 CLVs.

Therefore, when the conservation law is present we use Nλ =
N − 1 when computing the full spectrum of CLVs.

The dynamics of a diffusively coupled lattice in the four-
band chaos regime with a conservation law is shown in
Fig. 13. In Fig. 13(a) the state of the maps are shown at four
consecutive time steps which have been color coded in the
sequence: red, blue, green, and cyan. The four band struc-
ture remains yet there are several new interesting features.
The four bands are now much closer together as indicated

(a) (b)

FIG. 13. The dynamics of diffusively coupled maps in the four-
band chaos regime with a conservation law (N = 512, β = 1, a =
1.1). (a) The values of the lattice sites at four consecutive time steps
which are color coded in the order red, blue, green, and cyan. (b) A
space-time plot of the lattice for every 16 time steps (n = 16n∗).
By showing every 16th time step the regions of different magnitude
(red and blue) and the immobile barriers between them (green) are
evident.

FIG. 14. The influence of the conservation law on the variation
of Dλ with N . Circles are diffusively coupled maps with a con-
servation law (β = 1). Lower circles (red) are for four band chaos
(a = 1.1). The dashed line is the average result without conservation
law. For four-band chaos the conservation law significantly reduces
Dλ. Upper circles (blue) are for homogeneneous chaos (a = 1.6),
dash-dotted line is average result without a conservation law. Dλ

does not vary significantly with a conservation law for homogeneous
chaos. Solid lines are linear fits and the gray region indicates inacces-
sible values. Results are shown using three different random initial
conditions for a = 1.1 and a = 1.6 at each N .

by the values of the maps which are now within the range
−5 × 10−4 � ui � 5 × 10−2 as opposed to −0.1 � ui � 1 in
the absence of the conservation law. In addition, the lattice
values with a conservation law now include kinks, or barriers,
between the lattice values within each band. These defect
structures were not present in the absence of a conservation
law as shown in Fig. 3. The banded nature of the dynamics is
also evident by the striped form of the space-time plot shown
in Fig. 13(b).

Insight into the complexity of the dynamics is given by
the magnitude of the fractal dimension. The variation of Dλ

with β is shown in Fig. 14 as a function of system size N .
The diffusively coupled lattices with a conservation law are
shown by the circles (red, lower). Chaotic dynamics were only
found for N � 200 in our simulations. We did not attempt to
quantify precisely the system size where this transition occurs.
The solid black line through the red circles (lower) is a linear
fit through the data points indicating extensive chaos. The
dashed line is the variation of Dλ for the four band chaos case
without a conservation law from Fig. 14 for reference. The
fractal dimension has decreased by nearly a factor of two due
to the conservation law.

The variation of Dph with N is shown in Fig. 15. The results
for the four band chaos case with the conservation law are
shown as red circles and, for reference, Dph for β = 0 is shown
as open circles. The physical dimension does not change
significantly due to the conservation law where the number
of physical modes is consistently near the total number of
degrees of freedom.

Space-time plots of the CLVs are shown in Fig. 16 for
diffusively coupled maps in the four band chaos regime with
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FIG. 15. The influence of the conservation law on the variation
of Dph with N : circles (red) a = 1.1, β = 1; squares (blue) a = 1.6,
β = 1; circles (open) a = 1.1, β = 0; squares (open) a = 1.6, β = 0.
For each case, results using three different random initial conditions
are shown.

a conservation law. The leading CLV shown in Fig. 16(a)
shows a striking difference when compared to the β = 0 result
shown in Fig. 7(a). The leading CLV is much less localized
when the conservation law is present. This indicates the pres-
ence of many locations along the lattice, at any time n, where
small perturbations would grow rapidly. The overall trend is
again a decrease in localization with increasing index of the
CLV as illustrated in Figs. 16(b)–16(d).

The spatial power spectrum of the CLVs is shown in
Fig. 17(a) which indicates a similar distribution of power
over the spatial scales when compared with Fig. 8(a) for the
four-band chaos case without a conservation law. We note that
the sum of the perturbations must vanish at every time step in
order to satisfy the conservation law when β = 1. This can be

(a) (b)

(c) (d)

FIG. 16. Space-time plots of the CLVs of four-band chaos with a
conservation law (N = 512, β = 1, a = 1.1). |�v (n)

k | is shown for (a)
k = 1, (b) k = 10, (c) k = 100, and (d) k = 500. The correspond-
ing Lyapunov exponents are λ1 = 0.0481, λ10 = 0.0316, λ100 =
−0.2125, and λ500 = −3.3095.

(a)

(b)

FIG. 17. The spatial power spectrum of the CLVs with a con-
servation law, β = 1, for (a) a = 1.1 and (b) a = 1.6 using the
conventions of Fig. 8.

expressed as

N∑
i=1

δ�u(n)
j = 0, (14)

where j = 1, . . . , Nλ is the CLV index and the summation
index i is over the elements of the jth perturbation vector
δ�u(n)

j . This results in the vanishing values of the spatial power
spectrum when the integer wave number is k = 1 as shown
in Fig. 17. The significant reduction in the localization of the
CLVs when the conservation law is enforced is quantified by
the orange diamonds in Fig. 9(a).

The violation of the DOS are shown in Fig. 18 for the four
band chaos case with a conservation law. There is a large
band of entangled physical modes that are followed by the
transient modes. A closer inspection reveals Dph = 507 with
four transient modes.

We now investigate how the dynamics and CLVs in the
homogeneous chaos regime are affected by a conservation
law. The dynamics of the lattice are illustrated in Fig. 19.
Again the lattice values are now tightly constrained to within
a small band as shown in Fig. 19(a). In general, the lattice
values remain homogeneously distributed within this range
and there is not a four-band structure nor the presence of any
kinks or defect structures. The complexity of the dynamics is
illustrated further by the significant variations shown in the
space-time plot of Fig. 19(b).
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(a)

(b)

FIG. 18. Violations of the DOS for four-band chaos with a
conservation law (N = 512, β = 1, a = 1.1) indicating Dph = 507
and four transient modes. Dark regions represent violations and
light regions represent the absence of violations. (a) Entire lattice.
(b) Close-up of the last 50 CLVs.

The variation of the fractal dimension with system size for
these dynamics is shown in Fig. 14. The diffusively coupled
lattice in the homogeneous chaos regime with a conservation
law is illustrated by the blue circles (upper) where chaotic
dynamics were found for N � 64. The variation of Dλ with
N for these parameters with β = 0 is indicated by the dash-
dotted line which is included for reference. A comparison
of these results suggests that the fractal dimension for the
homogeneous chaos case is not significantly affected by the
conservation law.

The variation of the physical dimension with system size
for the homogeneous chaos case with a conservation law is
shown in Fig. 15 as the blue squares. The corresponding result

(a) (b)

FIG. 19. The dynamics of diffusively coupled maps in the ho-
mogeneous chaos regime with a conservation law (N = 512, β = 1,
a = 1.6). (a) Lattice values at one instant of time. (b) Space-time plot
of the dynamics showing every 16th time step (n = 16n∗).

(a) (b)

(c) (d)

FIG. 20. Space-time plots of the CLVs of homogeneous chaos
with a conservation law (N = 512, β = 1, a = 1.6). |�v (n)

k | is shown
for (a) k = 1, (b) k = 10, (c) k = 100, and (d) k = 500. The cor-
responding Lyapunov exponents are λ1 = 0.2963, λ10 = 0.2777,
λ100 = 0.1058, and λ500 = −2.8016.

where β = 0 is shown as the open squares. Again the physical
dimension is not significantly affected by the presence of
a conservation law and its value remains close to the total
number of degrees of freedom of the system.

The spatiotemporal features of the CLVs for the homoge-
neous chaos case with a conservation law is shown in Fig. 20.
Again the CLVs are now highly delocalized due to the pres-
ence of the conservation law. This is apparent by comparing
the delocalized leading CLV shown in Fig. 20(a) for β = 1
with the much more spatially localized structure of the leading
CLV shown in Fig. 11(a) for β = 0. In Fig. 20 the localization
decreases as the index of the CLV increases.

The spatial power spectrum of the CLVs for homoge-
neous chaos with a conservation law is shown in Fig. 17(b).
Again, the presence of the conservation law does not signifi-
cantly affect the dominant spatial scales when comparing with
Fig. 17(a). The significant reduction in the localization of the
CLVs is shown clearly by the orange diamonds in Fig. 9(b).

The violation of the DOS for the lattice in the homo-
geneous chaos regime with a conservation law is shown in
Fig. 21. These results indicate a large number of entangled
physical modes that are followed by transient modes that
appear in pairs. For these parameters, Dph = 503 and there
are eight transient modes.

A comparison of the violations of the DOS with, and
without a conservation law, suggests that the degree of en-
tanglement of the leading physical modes decreases with the
inclusion of the conservation law. The degree of entanglement
refers to the number of adjacent CLVs that are tangled with
one another as indicated by a significant violation of the DOS.
For example, in Fig. 10(a) (β = 0, a = 1.1) nearly all of the
CLVs with indices 1 � k1 � 150 and 1 � k2 � 150 exhibit
significant violations. However, when the conservation law is
included, as shown in Fig. 18(a), far fewer of the leading CLVs
are entangled.

As a measure of this entanglement we compute the frac-
tion of the CLV pairs, ξ , that exhibit a significant amount
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(a)

(b)

FIG. 21. Violations of the DOS for homogeneous chaos with a
conservation law (N = 512, β = 1, a = 1.6) indicating Dph = 503
and eight transient modes. (a) Entire lattice. (b) Close-up of the last
50 CLVs.

of violation of the DOS. In our calculations, we have set
the threshold indicating a significant amount of violation as
ντ

k1,k2
� 1 × 10−3. We only consider distinct pairs of CLVs,

k12, since all CLVs are always in violation when compared
with themselves. This threshold value of ντ

k1,k2
corresponds to

a pair of CLVs that exhibit a violation of the DOS for 0.1% of
the time or more.

Our conclusions do not change significantly with small
changes in the value of this threshold. We also point out
that this threshold value is in the middle of the color scale
used when plotting the violations of the DOS in Figs. 10, 12,
18, and 21. A CLV pair that exhibits a significant value of
violation is given a value of unity, αk1,k2 = 1, and a CLV pair
that does not exhibit a significant violation is given a value of
zero, αk1,k2 = 0. The final reported value of ξ is the average
value of these α over all of the CLV pairs considered, ξ = ᾱ.
Therefore, 0 � ξ � 1 where ξ = 1 when all distinct pairs of
CLVs have a significant amount of violation and a value of
ξ = 0 when there is the absence of any violation.

We first consider the case of four-band chaos without a
conservation law. A closer inspection of Fig. 10(a) indicates
the presence of violations for nearly all pairs of CLVs with
indices 1 � k � 150. The value for the amount of entangle-
ment for the first 150 CLVs yields ξ = 0.96. This indicates
that 96% of the distinct pairs of CLVs, with indices of 150 or
less, exhibit a significant amount of entanglement. This is in
contrast to Fig. 18(a) which indicates much less entanglement
occurring for k � 150 when the conservation law is imposed.

The amount of entanglement for this case yields ξ = 0.71.
These results indicate that the amount of entanglement of
the leading CLVs decreases in the presence of a conservation
law. In addition, the fractal dimension of the dynamics, Dλ,
decreases in the presence of a conservation law as indicated
by Fig. 14. If ξ is computed using all distinct pairs of CLVs,
rather than just a subset of the leading CLVs, then its value is
much smaller which will be discussed in Sec. III C.

Similar conclusions can be drawn regarding the amount
of entanglement for the case of homogeneous chaos.
Figure 12(a) indicates the presence of entanglement for the
first 200 CLVs in the absence of a conservation law. For
these CLVs the amount of entanglement is ξ = 0.96. There
is a decrease in this entanglement when a conservation law
is present as shown in Fig. 21(a). Using only the first 200
CLVs yields a decrease in the amount of entanglement to
ξ = 0.57. For this case, the degree of entanglement decreases
significantly in the presence of a conservation law while Dλ

remains nearly the same as shown in Fig. 14.

C. Chaotic dynamics with a broken conservation law

We now explore the variation of the chaotic dynamics
as a function of the enforcement of the conservation law.
In the previous sections we explored the two cases of no
conservation law (β = 0) and a fully imposed conservation
law (β = 1). We now investigate the dynamics over the entire
range of values of 0 � β � 1.

The presence of the additive conservation law has a signif-
icant impact on the dynamics. This is most directly observed
by quantifying the sum of the lattice sites at each time step.
The time average of this sum S is given by

S(β ) =
〈

N∑
i=1

u(n)
i

〉
t

, (15)

where the angle brackets indicate a time average and the
dependence on β is explicitly shown.

The variation of S(β ) with β is shown in Fig. 22. Results
for four-band chaos (a = 1.1) are shown using circles and
results for homogeneous chaos (a = 1.6) are shown using
squares. When the conservation law is fully imposed, β = 1,
the sum of the lattice sites at all time steps equals the constant
c0 as indicated by Eq. (3) where we have used c0 = 1.2.
This result is independent of the control parameter a and is
represented by the overlapping data symbols at β = 1 where
S = 1.2. For 0 < β < 1 the conservation law is broken and is
not fully imposed, as indicated by Eq. (4), which affects S(β ).

We first discuss the four band chaos case shown by the
circles in Fig. 22. For β = 0 the conservation law is not
imposed and the dynamics of the lattice is composed of the
entire lattice moving from one band to the next in lock-step
as shown in Fig. 3(a). As a result, S is very large for this case
since two of the bands are approximately unity which yields
sums of nearly 512 every two out of four time steps to yield
a time-averaged value of the sum of nearly 250 as shown in
Fig. 22. Since the entire lattice moves from one band to the
next this also yields a large value of the standard deviation
of the sum about the mean which is not shown. For small
values of β such that β � 0.09 these dynamics of a lattice
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FIG. 22. The variation of the mean of the sum of the lattice
values, S(β ), with the strength of the conservation law β. Circle
symbols are for a = 1.1. Open circles represent the nearly uncon-
strained four-band chaos state, which occurs for β � 0.1, see for
example Fig. 3(a) for β = 0. Red circles are for β � 0.1 where
the dynamics are in a four-band chaos state whose range of values
are significantly reduced by the conservation law, see Fig. 13(a) for
β = 1. The standard deviation of the variation about the mean for the
filled circles is smaller that the size of the data symbols used. Squares
(blue) are for homogeneous chaos (a = 1.6), the error bars represent
the standard deviation of the fluctuations about the mean value.

in lock-step persist which are indicated by the open circle
symbols.

However, for β = 0.1 we find that the presence of the
weakly enforced conservation law introduces defect struc-
tures into the lattice. At any one time step, there are lattice
sites with values within each of the four bands along with
defect structures between the bands. The result is that the
dynamics are similar with what is shown in Fig. 13 with
the exception that the lattice values are near the four bands
shown in Fig. 3(a) where u ≈ {−0.1, 0, 0.9, 1}. In this case,
the standard deviation about the mean is very small, error
bars are not included to show this since they are smaller than
the circle symbols used in Fig. 22. As β is increased be-
yond β = 0.1 the dynamics are composed of four-bands with
defects where the location of the four bands continues to de-
crease until they reach the constrained values shown in Fig. 13
for β = 1.

For the homogeneous chaos case, shown as squares (blue)
in Fig. 13, this general trend of a decreasing range of lattice
values with increasing β is again found. The lattice values
have the largest range for β = 0 as shown in Fig. 4(a) which
decreases to the smallest range of values for β = 1 shown in
Fig. 19(a). The lattice values are not constrained to a band
structure and the standard deviation of the fluctuations about
the mean are shown by the error bars.

The variation of the amount of entanglement of the CLVs,
ξ , with β is shown in Fig. 23 for both four-band chaos (circles,
red) and homogeneous chaos (squares, blue). For four-band
chaos, the leading 150 CLVs are used and for the homo-
geneous chaos case the leading 200 CLVs are used which
aligns with the discussion in Sec. III B. For both four-band
chaos and homogeneous chaos, it is clear that the amount of

FIG. 23. The variation of the entanglement of the leading CLVs,
ξ , with the strength of the conservation law as indicated by β: circles
(red) a = 1.1 and squares (blue) a = 1.6. For a = 1.1, ξ is computed
using the first 150 CLVs. Symbols are mean values of ξ using three
different random initial conditions at each β, error bars are the
standard deviation. For a = 1.6, ξ is computed using the first 200
CLVs. The variation of ξ with initial conditions for a = 1.6 is much
smaller and results are shown for one initial condition. The value of ξ

using the entire lattice is shown as open symbols for a = 1.1 (circles)
and a = 1.6 (squares). Values are shown 0 � β � 1 in increments of
0.1 in addition to β = 0.001 and 0.01.

entanglement is largest for β = 0 and that it is significantly
reduced for β = 1. The variation of ξ with β that results when
the entire lattice is used in the calculation is shown with the
open symbols. The amount of entanglement when using the
entire lattice remains at nearly 25% for all of the conditions
we have explored.

For the four-band chaos results, the amount of entangle-
ment decreases with increasing values of β. In this case, there
is some variation in the dynamics as a function of the initial
conditions that are used. As a result, we report results at each
value of β for simulations that were started from three dif-
ferent random initial conditions. The circle symbols indicate
the average value of ξ , and the error bars are the standard
deviation of ξ , over these initial conditions.

A similar trend in the variation of ξ with β is shown for
the case of homogeneous chaos as indicated by the squares
in Fig. 23. For this case, less than one percent variation was
found in the value of ξ with different random initial conditions
and the results shown in Fig. 23 at each β are for a single
random initial condition.

In Sec. III B it was shown that the spatial localization of the
magnitude of the CLVs varied significantly with and without
a conservation law. Our investigation indicated that a fully
imposed conservation law resulted in a significant amount of
delocalization. This is evident by comparing Figs. 11(a) and
20(a) for the cases of β = 0 and 1, respectively. We have also
explored how these findings vary as a function of β. In the
following we show results only for the homogeneous chaos
case although similar trends are also found for the case of
four-band chaos.
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(a) (b)

(c) (d)

FIG. 24. Space-time plots of the magnitude of the leading
CLV, |�v (n)

1 |, as a function of β for homogeneous chaos (a = 1.6).
(a) β = 0.01, (b) β = 0.1, (c) β = 0.5, and (d) β = 0.9. For β = 0
see Fig. 11(a), for β = 1 see Fig. 20(a).

Figure 24 illustrates space-time plots of the magnitude
of the leading CLV, |�v (n)

1 |, for four different values of β.
Figure 24(a) shows results for a very weakly imposed con-
servation law where β = 0.01. A comparison of Fig. 24(a)
with Fig. 11(a) indicates the significant delocalization that has
occurred even for this small amount of global coupling. In
Fig. 24(a) the regions of large magnitude of the leading CLV
are contained by several stripe structures which also contain
small scale structures including branching type features.

Figure 24(b) shows the space-time plot for the leading CLV
for β = 0.1. It is clear that the regions containing significant
CLV magnitude has increased and that the spatial localization
has decreased. This trend of decreasing localization contin-
ues with increasing values of β. Figure 24(c) shows the
space-time plot for β = 0.5 which is now highly delocalized.
Figure 24(d) shows the highly delocalized leading CLV for
β = 0.9. In general, the trend is that the spatial localization
decreases with increasing values of β. We emphasize that even

a very weakly imposed conservation law leads to a significant
amount of delocalization of the leading CLV. This suggests
that a conservation law, even a weakly imposed one, may
result in dynamics that are more sensitive to perturbations that
occur over a wider range of spatial locations.

IV. CONCLUSION

We have used CMLs to quantitatively explore high-
dimensional spatiotemporal chaos. This has made it possible
to explore chaotic dynamics with physical dimensions on the
order of 500 for a wide range of conditions. This required the
computation of over 500 CLVs for long times which remains
a very difficult calculation using the partial differential equa-
tions that govern many laboratory systems. By exploring two
values of the control parameter, and for lattices with a con-
servation law of varying strength, we were able to investigate
difficult fundamental questions.

Our results suggest that a conservation law, even when
imposed weakly, strongly delocalizes the spatial dependence
of the CLVs for the conditions we explore. This was found
to be true for the four band chaos regime as well as the
homogeneous chaos regime. In addition, the entanglement of
the leading CLVs, composing the leading part of the physical
modes in our study, is significantly affected by the presence
of a conservation law. As the strength of the conservation
law is increased, the entanglement of the leading CLVs with
their neighbors decreases. We anticipate that these findings
will provide valuable insights to guide future investigations
using CLVs aimed at building a better physical understanding
of larger and more complex laboratory scale systems with
conservation laws.
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